博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
net_py_add_conv5_conv6
阅读量:5097 次
发布时间:2019-06-13

本文共 10755 字,大约阅读时间需要 35 分钟。

./flyai train -p=1 -b=64 -e=6000

score : 82.21
cnn = Net().to(device)optimizer = Adam(cnn.parameters(), lr=0.0005, betas=(0.99999999, 0.999999999999))  # 选用AdamOptimizerloss_fn = nn.CrossEntropyLoss()  # 定义损失函数

./flyai train -p=1 -b=64 -e=5000

score : 81.8

net.py

#   build CNNfrom torch import nn# build CNNclass Net(nn.Module):    # def __init__(self,num_classes=10):    def __init__(self):        super(Net, self).__init__()           self.conv1 = nn.Conv2d(3, 32, 5, stride=1, padding=2)               self.relu1 = nn.ReLU(True)        self.bn1 = nn.BatchNorm2d(32)        self.pool1 = nn.MaxPool2d(2, 2)                self.conv2 = nn.Conv2d(32, 64, 3, stride=1, padding=1)        self.relu2 = nn.ReLU(True)        self.bn2 = nn.BatchNorm2d(64)        self.pool2 = nn.MaxPool2d(2, 2)           self.conv3 = nn.Conv2d(64, 128, 3, stride=1, padding=1)        self.relu3 = nn.ReLU(True)        self.bn3 = nn.BatchNorm2d(128)        self.pool3 = nn.MaxPool2d(2, 2)            self.conv4 = nn.Conv2d(128, 128, 3, stride=1, padding=1)        self.relu4 = nn.ReLU(True)        self.bn4 = nn.BatchNorm2d(128)        self.pool4 = nn.MaxPool2d(2, 2)  # 加深网络##        self.conv5 = nn.Conv2d(128, 256, 3, stride=1, padding=1)        """class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)参数:    in_channels (-) – 输入信号的通道数.(最初输入的图片样本的 channels ,取决于图片类型,比如RGB;)    out_channels (-) – 卷积后输出结果的通道数.( 卷积操作完成后输出的 out_channels ,取决于卷积核的数量。此时的 out_channels 也会作为下一次卷积时的卷积核的 in_channels)    最初输入的图片样本的 channels ,取决于图片类型,比如RGB    卷积操作完成后输出的 out_channels ,取决于卷积核的数量。此时的 out_channels 也会作为下一次卷积时的卷积核的 in_channels;    卷积核中的 in_channels ,刚刚2中已经说了,就是上一次卷积的 out_channels ,如果是第一次做卷积,就是1中样本图片的 channels 。    kernel_size (-) – 卷积核的形状.    stride (-) – 卷积每次移动的步长, 默认为1.    padding (-) – 处理边界时填充0的数量, 默认为0(不填充).    dilation (-) – 采样间隔数量, 默认为1, 无间隔采样.    groups (-) – 输入与输出通道的分组数量. 当不为1时, 默认为1(全连接).(group的作用之终极版:可以通过设置group,将某层的单路卷积分为多个并行的卷积支路。)    参数group的作用为:将输入数据按通道顺序分组, 每组有in_channel/group个通道.(例:group为2时,输入数据前一半通道为一组)    简而言之, group参数的目的就是将原本的大卷积分成多个并联(side by side)的小卷积    另: 在in_channel不变的情况下, 当group>1时, kernel总数不变, 而filter总数缩小group倍.    而在filter、kernel总数不变的情况下, group增大, 需要的in_channel按同样比例增大.        group的作用之终极版:可以通过设置group,将某层的单路卷积分为多个并行的卷积支路。     参数dilation的作用为: 控制卷积核元素的间隔大小.具体可搜索“空洞卷积”    bias (-) – 为 True 时, 添加偏置.Examples:>>> # With square kernels and equal stride>>> m = nn.Conv2d(16, 33, 3, stride=2)>>> # non-square kernels and unequal stride and with padding>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))>>> # non-square kernels and unequal stride and with padding and dilation>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))>>> input = autograd.Variable(torch.randn(20, 16, 50, 100))>>> output = m(input)        """        self.relu5 = nn.ReLU(True)        self.bn5 = nn.BatchNorm2d(256)        """class torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True)参数:    num_features – 预期输入的特征数,大小为 ‘batch_size x num_features x height x width’    eps – 给分母加上的值,保证数值稳定(分母不能趋近0或取0),默认为 1e-5    momentum – 动态均值和动态方差使用的移动动量值,默认为 0.1    affine – 布尔值,设为 True 时,表示该层添加可学习,可改变的仿射参数,即 gamma 和 beta,默认为 True形状:    输入:(N, C, H, W)    输出:(N, C, H, W) (same shape as input)示例:>>> # With Learnable Parameters>>> m = nn.BatchNorm2d(100)>>> # Without Learnable Parameters>>> m = nn.BatchNorm2d(100, affine=False)>>> input = autograd.Variable(torch.randn(20, 100, 35, 45))>>> output = m(input)        """        self.pool5 = nn.MaxPool2d(2, 2)          self.conv6 = nn.Conv2d(256, 256, 3, stride=1, padding=1)        """Traceback (most recent call last):  File "main.py", line 68, in 
outputs = cnn(x_train) File "/home/hugeng/.conda/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__ result = self.forward(*input, **kwargs) File "/home/hugeng/FlyAI_wang/intelSceneClassification_FlyAI/net.py", line 93, in forward output = self.conv6(output) File "/home/hugeng/.conda/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__ result = self.forward(*input, **kwargs) File "/home/hugeng/.conda/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 301, in forward self.padding, self.dilation, self.groups)RuntimeError: Given groups=1, weight of size [256, 256, 3, 3], expected input[32, 128, 4, 4] to have 256 channels, but got 128 channels instead 最初输入的图片样本的 channels ,取决于图片类型,比如RGB; 卷积操作完成后输出的 out_channels ,取决于卷积核的数量。此时的 out_channels 也会作为下一次卷积时的卷积核的 in_channels; 卷积核中的 in_channels ,刚刚2中已经说了,就是上一次卷积的 out_channels ,如果是第一次做卷积,就是1中样本图片的 channels 。 """ self.relu6 = nn.ReLU(True) self.bn6 = nn.BatchNorm2d(256) self.pool6 = nn.MaxPool2d(2, 2)# MaxPool2d """class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=F kernel_size – 最大池化操作时的窗口大小 stride – 最大池化操作时窗口移动的步长, 默认值是 kernel_size padding – 输入的每条边隐式补0的数量 dilation – 用于控制窗口中元素的步长的参数 return_indices – 如果等于 True, 在返回 max pooling 结果的同时返回最大值的索引 这在之后的 Unpooling 时很有用 ceil_mode – 如果等于 True, 在计算输出大小时,将采用向上取整来代替默认的向下取整的方式>>> # pool of square window of size=3, stride=2>>> m = nn.MaxPool2d(3, stride=2)>>> # pool of non-square window>>> m = nn.MaxPool2d((3, 2), stride=(2, 1))>>> input = autograd.Variable(torch.randn(20, 16, 50, 32))>>> output = m(input) """### 加深网络# self.fc1 = nn.Linear(128*8*8, 1024) self.fc1 = nn.Linear(1024, 1024) self.relu5 = nn.ReLU(True) self.fc2 = nn.Linear(1024, 6) """>>> m = nn.Linear(20, 30)>>> input = torch.randn(128, 20)>>> output = m(input)>>> print(output.size())torch.Size([128, 30]) """ def forward(self, input): output = self.conv1(input) output = self.relu1(output) output = self.bn1(output) output = self.pool1(output) output = self.conv2(output) output = self.relu2(output) output = self.bn2(output) output = self.pool2(output) output = self.conv3(output) output = self.relu3(output) output = self.bn3(output) output = self.pool3(output) output = self.conv4(output) output = self.relu4(output) output = self.bn4(output) output = self.pool4(output) # print("size after pool4 : {}" # .format(output.shape)) # 加深网络 output = self.conv5(output) output = self.relu5(output) output = self.bn5(output) output = self.pool5(output) output = self.conv6(output) output = self.relu6(output) output = self.bn6(output) output = self.pool6(output) # print("size after pool6 is : {}" # "type of output is : {}" # .format(output.shape, # type(output)) # )# 加深网络 """Traceback (most recent call last): File "main.py", line 68, in
outputs = cnn(x_train) File "/home/hugeng/.conda/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__ result = self.forward(*input, **kwargs) File "/home/hugeng/.local/share/Trash/files/intelSceneClassification_FlyAI.3/net.py", line 164, in forward output = output.view(-1, 128*8*8)RuntimeError: invalid argument 2: size '[-1 x 8192]' is invalid for input with 102400 elements at /opt/conda/conda-bld/pytorch_1535493744281/work/aten/src/TH/THStorage.cpp:80 """# output = output.view(-1, 128*8*8) output = output.view(-1, 1024) # 返回一个有相同数据但大小不同的新的 tensor """view(*args) → Tensor返回一个有相同数据但大小不同的新的 tensor.返回的 tensor 与原 tensor 共享相同的数据, 一定有相同数目的元素, 但大小不同. 一个 tensor 必须是连续的 ( contiguous() ) 才能被查看.参数:args (torch.Size 或 int...) – 期望的大小示例:>>> x = torch.randn(4, 4)>>> x.size()torch.Size([4, 4])>>> y = x.view(16)>>> y.size()torch.Size([16])>>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions ( -1 的意思是从其他维度进行infer推断)>>> z.size()torch.Size([2, 8])view_as(tensor)将该 tensor 作为指定的 tensor 返回查看.这相当于:self.view(tensor.size())zero_()用0填充该 tensor.class torch.ByteTensor下面这些函数方法只存在于 torch.ByteTensor.all() → bool如果 tensor 里的所有元素都是非零的, 则返回 True, 否在返回 False.any() → bool如果 tensor 里的存在元素是非零的, 则返回 True, 否在返回 False. """ output = self.fc1(output) output = self.relu5(output) output = self.fc2(output) return output

main.py

# -*- coding: utf-8 -*import argparseimport torchimport torch.nn as nnfrom flyai.dataset import Datasetfrom torch.optim import Adamfrom model import Modelfrom net import Netfrom path import MODEL_PATH# 数据获取辅助类dataset = Dataset()# 模型操作辅助类model = Model(dataset)# 超参parser = argparse.ArgumentParser()parser.add_argument("-e", "--EPOCHS", default=10, type=int, help="train epochs")parser.add_argument("-b", "--BATCH", default=1, type=int, help="batch size")args = parser.parse_args()# 判断gpu是否可用if torch.cuda.is_available():    device = 'cuda'else:    device = 'cpu'device = torch.device(device)def eval(model, x_test, y_test):    cnn.eval()    batch_eval = model.batch_iter(x_test, y_test)    total_acc = 0.0    data_len = len(x_test)    for x_batch, y_batch in batch_eval:        batch_len = len(x_batch)        outputs = cnn(x_batch)        _, prediction = torch.max(outputs.data, 1)        correct = (prediction == y_batch).sum().item()        acc = correct / batch_len        total_acc += acc * batch_len    return total_acc / data_lencnn = Net().to(device)optimizer = Adam(cnn.parameters(), lr=0.001, betas=(0.99, 0.9999))  # 选用AdamOptimizerloss_fn = nn.CrossEntropyLoss()  # 定义损失函数# 训练并评估模型best_accuracy = 0for i in range(args.EPOCHS):    cnn.train()    x_train, y_train, x_test, y_test = dataset.next_batch(args.BATCH)  # 读取数据    x_train = torch.from_numpy(x_train)    y_train = torch.from_numpy(y_train)    x_train = x_train.float().to(device)    y_train = y_train.long().to(device)    x_test = torch.from_numpy(x_test)    y_test = torch.from_numpy(y_test)    x_test = x_test.float().to(device)    y_test = y_test.long().to(device)    outputs = cnn(x_train)    _, prediction = torch.max(outputs.data, 1)    optimizer.zero_grad()    loss = loss_fn(outputs, y_train)    loss.backward()    optimizer.step()    # 若测试准确率高于当前最高准确率,则保存模型    train_accuracy = eval(model, x_test, y_test)    if train_accuracy > best_accuracy:        best_accuracy = train_accuracy        model.save_model(cnn, MODEL_PATH, overwrite=True)        print("step %d, best accuracy %g" % (i, best_accuracy))    print(str(i) + "/" + str(args.EPOCHS))

转载于:https://www.cnblogs.com/hugeng007/p/10629760.html

你可能感兴趣的文章
使用vue脚手架搭建项目
查看>>
Java基础之ArrayList与LinkedList、Vector,以及HashMap与HashTable的区别
查看>>
python第九天课程:遇到了金角大王
查看>>
字符串处理
查看>>
ECharts(Enterprise Charts 商业产品图表库)初识
查看>>
LeetCode Factorial Trailing Zeroes (阶乘后缀零)
查看>>
hdu 5402 Travelling Salesman Problem (技巧,未写完)
查看>>
[AIR] 获取U盘,打开U盘
查看>>
HtmlUnitDriver 网页内容动态抓取
查看>>
ad logon hour
查看>>
获得进程可执行文件的路径: GetModuleFileNameEx, GetProcessImageFileName, QueryFullProcessImageName...
查看>>
证件照(1寸2寸)拍摄处理知识汇总
查看>>
罗马数字与阿拉伯数字转换
查看>>
Eclipse 反编译之 JadClipse
查看>>
asp.net 获取IP地理位置的几个主要接口
查看>>
Python入门-函数
查看>>
[HDU5727]Necklace(二分图最大匹配,枚举)
查看>>
距离公式汇总以及Python实现
查看>>
设计模式之装饰者模式
查看>>
【转】Linux内核调试方法总结
查看>>