./flyai train -p=1 -b=64 -e=6000
score : 82.21
cnn = Net().to(device)optimizer = Adam(cnn.parameters(), lr=0.0005, betas=(0.99999999, 0.999999999999)) # 选用AdamOptimizerloss_fn = nn.CrossEntropyLoss() # 定义损失函数
./flyai train -p=1 -b=64 -e=5000
score : 81.8
net.py
# build CNNfrom torch import nn# build CNNclass Net(nn.Module): # def __init__(self,num_classes=10): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, 5, stride=1, padding=2) self.relu1 = nn.ReLU(True) self.bn1 = nn.BatchNorm2d(32) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(32, 64, 3, stride=1, padding=1) self.relu2 = nn.ReLU(True) self.bn2 = nn.BatchNorm2d(64) self.pool2 = nn.MaxPool2d(2, 2) self.conv3 = nn.Conv2d(64, 128, 3, stride=1, padding=1) self.relu3 = nn.ReLU(True) self.bn3 = nn.BatchNorm2d(128) self.pool3 = nn.MaxPool2d(2, 2) self.conv4 = nn.Conv2d(128, 128, 3, stride=1, padding=1) self.relu4 = nn.ReLU(True) self.bn4 = nn.BatchNorm2d(128) self.pool4 = nn.MaxPool2d(2, 2) # 加深网络## self.conv5 = nn.Conv2d(128, 256, 3, stride=1, padding=1) """class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)参数: in_channels (-) – 输入信号的通道数.(最初输入的图片样本的 channels ,取决于图片类型,比如RGB;) out_channels (-) – 卷积后输出结果的通道数.( 卷积操作完成后输出的 out_channels ,取决于卷积核的数量。此时的 out_channels 也会作为下一次卷积时的卷积核的 in_channels) 最初输入的图片样本的 channels ,取决于图片类型,比如RGB 卷积操作完成后输出的 out_channels ,取决于卷积核的数量。此时的 out_channels 也会作为下一次卷积时的卷积核的 in_channels; 卷积核中的 in_channels ,刚刚2中已经说了,就是上一次卷积的 out_channels ,如果是第一次做卷积,就是1中样本图片的 channels 。 kernel_size (-) – 卷积核的形状. stride (-) – 卷积每次移动的步长, 默认为1. padding (-) – 处理边界时填充0的数量, 默认为0(不填充). dilation (-) – 采样间隔数量, 默认为1, 无间隔采样. groups (-) – 输入与输出通道的分组数量. 当不为1时, 默认为1(全连接).(group的作用之终极版:可以通过设置group,将某层的单路卷积分为多个并行的卷积支路。) 参数group的作用为:将输入数据按通道顺序分组, 每组有in_channel/group个通道.(例:group为2时,输入数据前一半通道为一组) 简而言之, group参数的目的就是将原本的大卷积分成多个并联(side by side)的小卷积 另: 在in_channel不变的情况下, 当group>1时, kernel总数不变, 而filter总数缩小group倍. 而在filter、kernel总数不变的情况下, group增大, 需要的in_channel按同样比例增大. group的作用之终极版:可以通过设置group,将某层的单路卷积分为多个并行的卷积支路。 参数dilation的作用为: 控制卷积核元素的间隔大小.具体可搜索“空洞卷积” bias (-) – 为 True 时, 添加偏置.Examples:>>> # With square kernels and equal stride>>> m = nn.Conv2d(16, 33, 3, stride=2)>>> # non-square kernels and unequal stride and with padding>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))>>> # non-square kernels and unequal stride and with padding and dilation>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))>>> input = autograd.Variable(torch.randn(20, 16, 50, 100))>>> output = m(input) """ self.relu5 = nn.ReLU(True) self.bn5 = nn.BatchNorm2d(256) """class torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True)参数: num_features – 预期输入的特征数,大小为 ‘batch_size x num_features x height x width’ eps – 给分母加上的值,保证数值稳定(分母不能趋近0或取0),默认为 1e-5 momentum – 动态均值和动态方差使用的移动动量值,默认为 0.1 affine – 布尔值,设为 True 时,表示该层添加可学习,可改变的仿射参数,即 gamma 和 beta,默认为 True形状: 输入:(N, C, H, W) 输出:(N, C, H, W) (same shape as input)示例:>>> # With Learnable Parameters>>> m = nn.BatchNorm2d(100)>>> # Without Learnable Parameters>>> m = nn.BatchNorm2d(100, affine=False)>>> input = autograd.Variable(torch.randn(20, 100, 35, 45))>>> output = m(input) """ self.pool5 = nn.MaxPool2d(2, 2) self.conv6 = nn.Conv2d(256, 256, 3, stride=1, padding=1) """Traceback (most recent call last): File "main.py", line 68, in outputs = cnn(x_train) File "/home/hugeng/.conda/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__ result = self.forward(*input, **kwargs) File "/home/hugeng/FlyAI_wang/intelSceneClassification_FlyAI/net.py", line 93, in forward output = self.conv6(output) File "/home/hugeng/.conda/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__ result = self.forward(*input, **kwargs) File "/home/hugeng/.conda/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 301, in forward self.padding, self.dilation, self.groups)RuntimeError: Given groups=1, weight of size [256, 256, 3, 3], expected input[32, 128, 4, 4] to have 256 channels, but got 128 channels instead 最初输入的图片样本的 channels ,取决于图片类型,比如RGB; 卷积操作完成后输出的 out_channels ,取决于卷积核的数量。此时的 out_channels 也会作为下一次卷积时的卷积核的 in_channels; 卷积核中的 in_channels ,刚刚2中已经说了,就是上一次卷积的 out_channels ,如果是第一次做卷积,就是1中样本图片的 channels 。 """ self.relu6 = nn.ReLU(True) self.bn6 = nn.BatchNorm2d(256) self.pool6 = nn.MaxPool2d(2, 2)# MaxPool2d """class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=F kernel_size – 最大池化操作时的窗口大小 stride – 最大池化操作时窗口移动的步长, 默认值是 kernel_size padding – 输入的每条边隐式补0的数量 dilation – 用于控制窗口中元素的步长的参数 return_indices – 如果等于 True, 在返回 max pooling 结果的同时返回最大值的索引 这在之后的 Unpooling 时很有用 ceil_mode – 如果等于 True, 在计算输出大小时,将采用向上取整来代替默认的向下取整的方式>>> # pool of square window of size=3, stride=2>>> m = nn.MaxPool2d(3, stride=2)>>> # pool of non-square window>>> m = nn.MaxPool2d((3, 2), stride=(2, 1))>>> input = autograd.Variable(torch.randn(20, 16, 50, 32))>>> output = m(input) """### 加深网络# self.fc1 = nn.Linear(128*8*8, 1024) self.fc1 = nn.Linear(1024, 1024) self.relu5 = nn.ReLU(True) self.fc2 = nn.Linear(1024, 6) """>>> m = nn.Linear(20, 30)>>> input = torch.randn(128, 20)>>> output = m(input)>>> print(output.size())torch.Size([128, 30]) """ def forward(self, input): output = self.conv1(input) output = self.relu1(output) output = self.bn1(output) output = self.pool1(output) output = self.conv2(output) output = self.relu2(output) output = self.bn2(output) output = self.pool2(output) output = self.conv3(output) output = self.relu3(output) output = self.bn3(output) output = self.pool3(output) output = self.conv4(output) output = self.relu4(output) output = self.bn4(output) output = self.pool4(output) # print("size after pool4 : {}" # .format(output.shape)) # 加深网络 output = self.conv5(output) output = self.relu5(output) output = self.bn5(output) output = self.pool5(output) output = self.conv6(output) output = self.relu6(output) output = self.bn6(output) output = self.pool6(output) # print("size after pool6 is : {}" # "type of output is : {}" # .format(output.shape, # type(output)) # )# 加深网络 """Traceback (most recent call last): File "main.py", line 68, in outputs = cnn(x_train) File "/home/hugeng/.conda/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__ result = self.forward(*input, **kwargs) File "/home/hugeng/.local/share/Trash/files/intelSceneClassification_FlyAI.3/net.py", line 164, in forward output = output.view(-1, 128*8*8)RuntimeError: invalid argument 2: size '[-1 x 8192]' is invalid for input with 102400 elements at /opt/conda/conda-bld/pytorch_1535493744281/work/aten/src/TH/THStorage.cpp:80 """# output = output.view(-1, 128*8*8) output = output.view(-1, 1024) # 返回一个有相同数据但大小不同的新的 tensor """view(*args) → Tensor返回一个有相同数据但大小不同的新的 tensor.返回的 tensor 与原 tensor 共享相同的数据, 一定有相同数目的元素, 但大小不同. 一个 tensor 必须是连续的 ( contiguous() ) 才能被查看.参数:args (torch.Size 或 int...) – 期望的大小示例:>>> x = torch.randn(4, 4)>>> x.size()torch.Size([4, 4])>>> y = x.view(16)>>> y.size()torch.Size([16])>>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions ( -1 的意思是从其他维度进行infer推断)>>> z.size()torch.Size([2, 8])view_as(tensor)将该 tensor 作为指定的 tensor 返回查看.这相当于:self.view(tensor.size())zero_()用0填充该 tensor.class torch.ByteTensor下面这些函数方法只存在于 torch.ByteTensor.all() → bool如果 tensor 里的所有元素都是非零的, 则返回 True, 否在返回 False.any() → bool如果 tensor 里的存在元素是非零的, 则返回 True, 否在返回 False. """ output = self.fc1(output) output = self.relu5(output) output = self.fc2(output) return output
main.py
# -*- coding: utf-8 -*import argparseimport torchimport torch.nn as nnfrom flyai.dataset import Datasetfrom torch.optim import Adamfrom model import Modelfrom net import Netfrom path import MODEL_PATH# 数据获取辅助类dataset = Dataset()# 模型操作辅助类model = Model(dataset)# 超参parser = argparse.ArgumentParser()parser.add_argument("-e", "--EPOCHS", default=10, type=int, help="train epochs")parser.add_argument("-b", "--BATCH", default=1, type=int, help="batch size")args = parser.parse_args()# 判断gpu是否可用if torch.cuda.is_available(): device = 'cuda'else: device = 'cpu'device = torch.device(device)def eval(model, x_test, y_test): cnn.eval() batch_eval = model.batch_iter(x_test, y_test) total_acc = 0.0 data_len = len(x_test) for x_batch, y_batch in batch_eval: batch_len = len(x_batch) outputs = cnn(x_batch) _, prediction = torch.max(outputs.data, 1) correct = (prediction == y_batch).sum().item() acc = correct / batch_len total_acc += acc * batch_len return total_acc / data_lencnn = Net().to(device)optimizer = Adam(cnn.parameters(), lr=0.001, betas=(0.99, 0.9999)) # 选用AdamOptimizerloss_fn = nn.CrossEntropyLoss() # 定义损失函数# 训练并评估模型best_accuracy = 0for i in range(args.EPOCHS): cnn.train() x_train, y_train, x_test, y_test = dataset.next_batch(args.BATCH) # 读取数据 x_train = torch.from_numpy(x_train) y_train = torch.from_numpy(y_train) x_train = x_train.float().to(device) y_train = y_train.long().to(device) x_test = torch.from_numpy(x_test) y_test = torch.from_numpy(y_test) x_test = x_test.float().to(device) y_test = y_test.long().to(device) outputs = cnn(x_train) _, prediction = torch.max(outputs.data, 1) optimizer.zero_grad() loss = loss_fn(outputs, y_train) loss.backward() optimizer.step() # 若测试准确率高于当前最高准确率,则保存模型 train_accuracy = eval(model, x_test, y_test) if train_accuracy > best_accuracy: best_accuracy = train_accuracy model.save_model(cnn, MODEL_PATH, overwrite=True) print("step %d, best accuracy %g" % (i, best_accuracy)) print(str(i) + "/" + str(args.EPOCHS))